Dynamic Clustering and Indexing of Multi-Dimensional Datasets

نویسندگان

  • Yong Shi
  • Aidong Zhang
چکیده

Abstract – Nowadays large volumes of data with high dimensionality are being generated in many fields. Most existing indexing techniques degrade rapidly when dimensionality goes higher. ClusterTree is a new indexing approach representing clusters generated by any existing clustering approach. It is a hierarchy of clusters and subclusters which incorporates the cluster representation into the index structure to achieve effective and efficient retrieval. The authors propose a new ClusterTree indexing structure which has new features from the time perspective. Each new data item is added to the ClusterTree with the time information which can be used later in the data update process for the acquisition of the new cluster structure. This approach guarantees that the ClusterTree is always in the most updated status which can further promote the efficiency and effectiveness of data insertion, query and update. This approach is highly adaptive to any kind of clusters.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

یک روش مبتنی بر خوشه‌بندی سلسله‌مراتبی تقسیم‌کننده جهت شاخص‌گذاری اطلاعات تصویری

It is conventional to use multi-dimensional indexing structures to accelerate search operations in content-based image retrieval systems. Many efforts have been done in order to develop multi-dimensional indexing structures so far. In most practical applications of image retrieval, high-dimensional feature vectors are required, but current multi-dimensional indexing structures lose their effici...

متن کامل

A divisive hierarchical clustering-based method for indexing image information

In most practical applications of image retrieval, high-dimensional feature vectors are required, but current multi-dimensional indexing structures lose their efficiency with growth of dimensions. Our goal is to propose a divisive hierarchical clustering-based multi-dimensional indexing structure which is efficient in high-dimensional feature spaces. A projection pursuit method has been used fo...

متن کامل

High-Dimensional Unsupervised Active Learning Method

In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...

متن کامل

A Multi-Objective Approach to Fuzzy Clustering using ITLBO Algorithm

Data clustering is one of the most important areas of research in data mining and knowledge discovery. Recent research in this area has shown that the best clustering results can be achieved using multi-objective methods. In other words, assuming more than one criterion as objective functions for clustering data can measurably increase the quality of clustering. In this study, a model with two ...

متن کامل

Assessment of the Performance of Clustering Algorithms in the Extraction of Similar Trajectories

In recent years, the tremendous and increasing growth of spatial trajectory data and the necessity of processing and extraction of useful information and meaningful patterns have led to the fact that many researchers have been attracted to the field of spatio-temporal trajectory clustering. The process and analysis of these trajectories have resulted in the extraction of useful information whic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001